Module pycpd.deformable_registration

Expand source code
from builtins import super
import numpy as np
import numbers
from .emregistration import EMRegistration
from .utility import gaussian_kernel, low_rank_eigen

class DeformableRegistration(EMRegistration):
    """
    Deformable registration.

    Attributes
    ----------
    alpha: float (positive)
        Represents the trade-off between the goodness of maximum likelihood fit and regularization.

    beta: float(positive)
        Width of the Gaussian kernel.
    
    low_rank: bool
        Whether to use low rank approximation.
    
    num_eig: int
        Number of eigenvectors to use in lowrank calculation.
    """

    def __init__(self, alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if alpha is not None and (not isinstance(alpha, numbers.Number) or alpha <= 0):
            raise ValueError(
                "Expected a positive value for regularization parameter alpha. Instead got: {}".format(alpha))

        if beta is not None and (not isinstance(beta, numbers.Number) or beta <= 0):
            raise ValueError(
                "Expected a positive value for the width of the coherent Gaussian kerenl. Instead got: {}".format(beta))

        self.alpha = 2 if alpha is None else alpha
        self.beta = 2 if beta is None else beta
        self.W = np.zeros((self.M, self.D))
        self.G = gaussian_kernel(self.Y, self.beta)
        self.low_rank = low_rank
        self.num_eig = num_eig
        if self.low_rank is True:
            self.Q, self.S = low_rank_eigen(self.G, self.num_eig)
            self.inv_S = np.diag(1./self.S)
            self.S = np.diag(self.S)
            self.E = 0.

    def update_transform(self):
        """
        Calculate a new estimate of the deformable transformation.
        See Eq. 22 of https://arxiv.org/pdf/0905.2635.pdf.

        """
        if self.low_rank is False:
            A = np.dot(np.diag(self.P1), self.G) + \
                self.alpha * self.sigma2 * np.eye(self.M)
            B = self.PX - np.dot(np.diag(self.P1), self.Y)
            self.W = np.linalg.solve(A, B)

        elif self.low_rank is True:
            # Matlab code equivalent can be found here:
            # https://github.com/markeroon/matlab-computer-vision-routines/tree/master/third_party/CoherentPointDrift
            dP = np.diag(self.P1)
            dPQ = np.matmul(dP, self.Q)
            F = self.PX - np.matmul(dP, self.Y)

            self.W = 1 / (self.alpha * self.sigma2) * (F - np.matmul(dPQ, (
                np.linalg.solve((self.alpha * self.sigma2 * self.inv_S + np.matmul(self.Q.T, dPQ)),
                                (np.matmul(self.Q.T, F))))))
            QtW = np.matmul(self.Q.T, self.W)
            self.E = self.E + self.alpha / 2 * np.trace(np.matmul(QtW.T, np.matmul(self.S, QtW)))

    def transform_point_cloud(self, Y=None):
        """
        Update a point cloud using the new estimate of the deformable transformation.

        Attributes
        ----------
        Y: numpy array, optional
            Array of points to transform - use to predict on new set of points.
            Best for predicting on new points not used to run initial registration.
                If None, self.Y used.
        
        Returns
        -------
        If Y is None, returns None.
        Otherwise, returns the transformed Y.
                

        """
        if Y is not None:
            G = gaussian_kernel(X=Y, beta=self.beta, Y=self.Y)
            return Y + np.dot(G, self.W)
        else:
            if self.low_rank is False:
                self.TY = self.Y + np.dot(self.G, self.W)

            elif self.low_rank is True:
                self.TY = self.Y + np.matmul(self.Q, np.matmul(self.S, np.matmul(self.Q.T, self.W)))
                return


    def update_variance(self):
        """
        Update the variance of the mixture model using the new estimate of the deformable transformation.
        See the update rule for sigma2 in Eq. 23 of of https://arxiv.org/pdf/0905.2635.pdf.

        """
        qprev = self.sigma2

        # The original CPD paper does not explicitly calculate the objective functional.
        # This functional will include terms from both the negative log-likelihood and
        # the Gaussian kernel used for regularization.
        self.q = np.inf

        xPx = np.dot(np.transpose(self.Pt1), np.sum(
            np.multiply(self.X, self.X), axis=1))
        yPy = np.dot(np.transpose(self.P1),  np.sum(
            np.multiply(self.TY, self.TY), axis=1))
        trPXY = np.sum(np.multiply(self.TY, self.PX))

        self.sigma2 = (xPx - 2 * trPXY + yPy) / (self.Np * self.D)

        if self.sigma2 <= 0:
            self.sigma2 = self.tolerance / 10

        # Here we use the difference between the current and previous
        # estimate of the variance as a proxy to test for convergence.
        self.diff = np.abs(self.sigma2 - qprev)

    def get_registration_parameters(self):
        """
        Return the current estimate of the deformable transformation parameters.


        Returns
        -------
        self.G: numpy array
            Gaussian kernel matrix.

        self.W: numpy array
            Deformable transformation matrix.
        """
        return self.G, self.W

Classes

class DeformableRegistration (alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs)

Deformable registration.

Attributes

alpha : float (positive)
Represents the trade-off between the goodness of maximum likelihood fit and regularization.
beta : float(positive)
Width of the Gaussian kernel.
low_rank : bool
Whether to use low rank approximation.
num_eig : int
Number of eigenvectors to use in lowrank calculation.
Expand source code
class DeformableRegistration(EMRegistration):
    """
    Deformable registration.

    Attributes
    ----------
    alpha: float (positive)
        Represents the trade-off between the goodness of maximum likelihood fit and regularization.

    beta: float(positive)
        Width of the Gaussian kernel.
    
    low_rank: bool
        Whether to use low rank approximation.
    
    num_eig: int
        Number of eigenvectors to use in lowrank calculation.
    """

    def __init__(self, alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if alpha is not None and (not isinstance(alpha, numbers.Number) or alpha <= 0):
            raise ValueError(
                "Expected a positive value for regularization parameter alpha. Instead got: {}".format(alpha))

        if beta is not None and (not isinstance(beta, numbers.Number) or beta <= 0):
            raise ValueError(
                "Expected a positive value for the width of the coherent Gaussian kerenl. Instead got: {}".format(beta))

        self.alpha = 2 if alpha is None else alpha
        self.beta = 2 if beta is None else beta
        self.W = np.zeros((self.M, self.D))
        self.G = gaussian_kernel(self.Y, self.beta)
        self.low_rank = low_rank
        self.num_eig = num_eig
        if self.low_rank is True:
            self.Q, self.S = low_rank_eigen(self.G, self.num_eig)
            self.inv_S = np.diag(1./self.S)
            self.S = np.diag(self.S)
            self.E = 0.

    def update_transform(self):
        """
        Calculate a new estimate of the deformable transformation.
        See Eq. 22 of https://arxiv.org/pdf/0905.2635.pdf.

        """
        if self.low_rank is False:
            A = np.dot(np.diag(self.P1), self.G) + \
                self.alpha * self.sigma2 * np.eye(self.M)
            B = self.PX - np.dot(np.diag(self.P1), self.Y)
            self.W = np.linalg.solve(A, B)

        elif self.low_rank is True:
            # Matlab code equivalent can be found here:
            # https://github.com/markeroon/matlab-computer-vision-routines/tree/master/third_party/CoherentPointDrift
            dP = np.diag(self.P1)
            dPQ = np.matmul(dP, self.Q)
            F = self.PX - np.matmul(dP, self.Y)

            self.W = 1 / (self.alpha * self.sigma2) * (F - np.matmul(dPQ, (
                np.linalg.solve((self.alpha * self.sigma2 * self.inv_S + np.matmul(self.Q.T, dPQ)),
                                (np.matmul(self.Q.T, F))))))
            QtW = np.matmul(self.Q.T, self.W)
            self.E = self.E + self.alpha / 2 * np.trace(np.matmul(QtW.T, np.matmul(self.S, QtW)))

    def transform_point_cloud(self, Y=None):
        """
        Update a point cloud using the new estimate of the deformable transformation.

        Attributes
        ----------
        Y: numpy array, optional
            Array of points to transform - use to predict on new set of points.
            Best for predicting on new points not used to run initial registration.
                If None, self.Y used.
        
        Returns
        -------
        If Y is None, returns None.
        Otherwise, returns the transformed Y.
                

        """
        if Y is not None:
            G = gaussian_kernel(X=Y, beta=self.beta, Y=self.Y)
            return Y + np.dot(G, self.W)
        else:
            if self.low_rank is False:
                self.TY = self.Y + np.dot(self.G, self.W)

            elif self.low_rank is True:
                self.TY = self.Y + np.matmul(self.Q, np.matmul(self.S, np.matmul(self.Q.T, self.W)))
                return


    def update_variance(self):
        """
        Update the variance of the mixture model using the new estimate of the deformable transformation.
        See the update rule for sigma2 in Eq. 23 of of https://arxiv.org/pdf/0905.2635.pdf.

        """
        qprev = self.sigma2

        # The original CPD paper does not explicitly calculate the objective functional.
        # This functional will include terms from both the negative log-likelihood and
        # the Gaussian kernel used for regularization.
        self.q = np.inf

        xPx = np.dot(np.transpose(self.Pt1), np.sum(
            np.multiply(self.X, self.X), axis=1))
        yPy = np.dot(np.transpose(self.P1),  np.sum(
            np.multiply(self.TY, self.TY), axis=1))
        trPXY = np.sum(np.multiply(self.TY, self.PX))

        self.sigma2 = (xPx - 2 * trPXY + yPy) / (self.Np * self.D)

        if self.sigma2 <= 0:
            self.sigma2 = self.tolerance / 10

        # Here we use the difference between the current and previous
        # estimate of the variance as a proxy to test for convergence.
        self.diff = np.abs(self.sigma2 - qprev)

    def get_registration_parameters(self):
        """
        Return the current estimate of the deformable transformation parameters.


        Returns
        -------
        self.G: numpy array
            Gaussian kernel matrix.

        self.W: numpy array
            Deformable transformation matrix.
        """
        return self.G, self.W

Ancestors

Subclasses

Methods

def get_registration_parameters(self)

Return the current estimate of the deformable transformation parameters.

Returns

self.G: numpy array
Gaussian kernel matrix.
self.W: numpy array
Deformable transformation matrix.
Expand source code
def get_registration_parameters(self):
    """
    Return the current estimate of the deformable transformation parameters.


    Returns
    -------
    self.G: numpy array
        Gaussian kernel matrix.

    self.W: numpy array
        Deformable transformation matrix.
    """
    return self.G, self.W
def transform_point_cloud(self, Y=None)

Update a point cloud using the new estimate of the deformable transformation.

Attributes

Y : numpy array, optional
Array of points to transform - use to predict on new set of points. Best for predicting on new points not used to run initial registration. If None, self.Y used.

Returns

If Y is None, returns None. Otherwise, returns the transformed Y.

Expand source code
def transform_point_cloud(self, Y=None):
    """
    Update a point cloud using the new estimate of the deformable transformation.

    Attributes
    ----------
    Y: numpy array, optional
        Array of points to transform - use to predict on new set of points.
        Best for predicting on new points not used to run initial registration.
            If None, self.Y used.
    
    Returns
    -------
    If Y is None, returns None.
    Otherwise, returns the transformed Y.
            

    """
    if Y is not None:
        G = gaussian_kernel(X=Y, beta=self.beta, Y=self.Y)
        return Y + np.dot(G, self.W)
    else:
        if self.low_rank is False:
            self.TY = self.Y + np.dot(self.G, self.W)

        elif self.low_rank is True:
            self.TY = self.Y + np.matmul(self.Q, np.matmul(self.S, np.matmul(self.Q.T, self.W)))
            return
def update_transform(self)

Calculate a new estimate of the deformable transformation. See Eq. 22 of https://arxiv.org/pdf/0905.2635.pdf.

Expand source code
def update_transform(self):
    """
    Calculate a new estimate of the deformable transformation.
    See Eq. 22 of https://arxiv.org/pdf/0905.2635.pdf.

    """
    if self.low_rank is False:
        A = np.dot(np.diag(self.P1), self.G) + \
            self.alpha * self.sigma2 * np.eye(self.M)
        B = self.PX - np.dot(np.diag(self.P1), self.Y)
        self.W = np.linalg.solve(A, B)

    elif self.low_rank is True:
        # Matlab code equivalent can be found here:
        # https://github.com/markeroon/matlab-computer-vision-routines/tree/master/third_party/CoherentPointDrift
        dP = np.diag(self.P1)
        dPQ = np.matmul(dP, self.Q)
        F = self.PX - np.matmul(dP, self.Y)

        self.W = 1 / (self.alpha * self.sigma2) * (F - np.matmul(dPQ, (
            np.linalg.solve((self.alpha * self.sigma2 * self.inv_S + np.matmul(self.Q.T, dPQ)),
                            (np.matmul(self.Q.T, F))))))
        QtW = np.matmul(self.Q.T, self.W)
        self.E = self.E + self.alpha / 2 * np.trace(np.matmul(QtW.T, np.matmul(self.S, QtW)))
def update_variance(self)

Update the variance of the mixture model using the new estimate of the deformable transformation. See the update rule for sigma2 in Eq. 23 of of https://arxiv.org/pdf/0905.2635.pdf.

Expand source code
def update_variance(self):
    """
    Update the variance of the mixture model using the new estimate of the deformable transformation.
    See the update rule for sigma2 in Eq. 23 of of https://arxiv.org/pdf/0905.2635.pdf.

    """
    qprev = self.sigma2

    # The original CPD paper does not explicitly calculate the objective functional.
    # This functional will include terms from both the negative log-likelihood and
    # the Gaussian kernel used for regularization.
    self.q = np.inf

    xPx = np.dot(np.transpose(self.Pt1), np.sum(
        np.multiply(self.X, self.X), axis=1))
    yPy = np.dot(np.transpose(self.P1),  np.sum(
        np.multiply(self.TY, self.TY), axis=1))
    trPXY = np.sum(np.multiply(self.TY, self.PX))

    self.sigma2 = (xPx - 2 * trPXY + yPy) / (self.Np * self.D)

    if self.sigma2 <= 0:
        self.sigma2 = self.tolerance / 10

    # Here we use the difference between the current and previous
    # estimate of the variance as a proxy to test for convergence.
    self.diff = np.abs(self.sigma2 - qprev)

Inherited members